Login
Remember
Register
Home
All Activity
Q&A
Questions
Hot!
Unanswered
Tags
Categories
Users
Ask a Question
Ask a Question
What is kepler’s law of periods? Show it
0
votes
asked
Mar 19, 2022
in
11th Physics
by
varun
(
6.7k
points)
What is kepler’s law of periods? Show it mathematically?
marks2
chapter8
#sub
Please
log in
or
register
to answer this question.
0
Answers
Categories
All categories
Maths
(8.6k)
Science
(14)
Physics
(3.4k)
11th Physics
(1.5k)
12th Physics
(1.9k)
Related questions
An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T=k/Rsqrt(r^3/g)`, where k is a dimensionless constant and g is acceleration due to
On which fundamental law of physics is keplers second law is
State Charles’s law? If air is filled in a vessel at `60^oc`. To what temperature should it be heated in order that `1/3^(rd)` of air may escape out of
Acceleration due to gravityThe acceleration for any object moving under the sole influence of gravity is known as acceleration due to gravity. So, for an object of mass `m,` the acceleration experienced by it is usually denoted by the symbol g which is related to F by Newton’s second law by relation `F= mg`. Thus,`g=F/m=(GM_e)/(r_e^2)`Acceleration `g` is readily measurable as `R_e` is a known quantity. The measurement of `G` by Cavendish’s experiment (or otherwise), combined with knowledge of `g and R_e` enables one to estimate `M_e` from the above equation. This is the reason why there is a popular statement
Acceleration due to gravityThe acceleration for any object moving under the sole influence of gravity is known as acceleration due to gravity. So, for an object of mass `m,` the acceleration experienced by it is usually denoted by the symbol g which is related to F by Newton’s second law by relation `F= mg`. Thus,`g=F/m=(GM_e)/(r_e^2)`Acceleration `g` is readily measurable as `R_e` is a known quantity. The measurement of `G` by Cavendish’s experiment (or otherwise), combined with knowledge of `g and R_e` enables one to estimate `M_e` from the above equation. This is the reason why there is a popular statement