Login
Remember
Register
Home
All Activity
Q&A
Questions
Hot!
Unanswered
Tags
Categories
Users
Ask a Question
Ask a Question
An 8 kg body performs S.H.M. of amplitude 30 cm. The restoring force is 60N, when the displacement is 30cm. Find: - a) Time period b) the acceleration c) potential and kinetic energy when the displacement is
0
votes
asked
Mar 19, 2022
in
11th Physics
by
varun
(
6.7k
points)
An 8 kg body performs S.H.M. of amplitude 30 cm. The restoring force is 60N, when the displacement is 30cm. Find: - a) Time period b) the acceleration c) potential and kinetic energy when the displacement is 12cm?
marks2
chapter14
#sub
Please
log in
or
register
to answer this question.
0
Answers
Categories
All categories
Maths
(8.6k)
Science
(14)
Physics
(3.4k)
11th Physics
(1.5k)
12th Physics
(1.9k)
Related questions
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is (a) 5 cm (b) 3 cm (c) 0
The kinetic energy of a particle executing S.H.M. is 16J when it is in its mean position. If the amplitude of oscillations is 25cm and the mass of the particle is 5.12kg. Calculate the time period of
Using the correspondence of S. H. M. and uniform circular motion, find displacement, velocity, amplitude, time period and frequency of a particle executing
For the damped oscillator shown in Fig., the mass m of the block is 200 g, k = 90 N `m^(–1)` and the damping constant b is 40 g `s^(–1)`. Calculate (a) the period of oscillation, (b) time taken for its amplitude of vibrations to drop to half of its initial value, and (c) the time taken for its mechanical energy to drop to half its initial value.
A particle is executing S H M of amplitude 4 cm and T = 4 sec. find the time taken by it to move from positive extreme position to half of its