Login
Remember
Register
Home
All Activity
Q&A
Questions
Hot!
Unanswered
Tags
Categories
Users
Ask a Question
Ask a Question
Uniform electric field of magnitude 100 V/m in space is directed along the line `y= 3 + x`. Find the potential difference between point `A (3, 1) & B
0
votes
asked
Mar 20, 2022
in
12th Physics
by
varun
(
6.7k
points)
Uniform electric field of magnitude 100 V/m in space is directed along the line `y= 3 + x`. Find the potential difference between point `A (3, 1) & B (1,3)`.
Options:
(a) 100 V (b) `200sqrt2V` (c) 200 V (d) zero
marks2
chapter2
#mcq
Please
log in
or
register
to answer this question.
0
Answers
Categories
All categories
Maths
(8.6k)
Science
(14)
Physics
(3.4k)
11th Physics
(1.5k)
12th Physics
(1.9k)
Related questions
Proton in an Electric Field Potential difference `(DeltaV)` between two points `A and B` separated by a distance `x`, in a uniform electric field `E` is given by `DeltaV =-Ex`, where `x` is measured parallel to the field lines. If a charge `q_0` moves from A to B, the change in potential energy `(DeltaU)` is given as `DeltaU=q_0 DeltaV`. A proton is released from rest in uniform electric field of magnitude `8.0 xx 10^4 Vm^(-1)` directed along the positive X-axis. The proton undergoes a displacement of 0.50 m in the direction of E.Mass of a proton `= 1.66 xx 10^(-27)
Proton in an Electric Field Potential difference `(DeltaV)` between two points `A and B` separated by a distance `x`, in a uniform electric field `E` is given by `DeltaV =-Ex`, where `x` is measured parallel to the field lines. If a charge `q_0` moves from A to B, the change in potential energy `(DeltaU)` is given as `DeltaU=q_0 DeltaV`. A proton is released from rest in uniform electric field of magnitude `8.0 xx 10^4 Vm^(-1)` directed along the positive X-axis. The proton undergoes a displacement of 0.50 m in the direction of E.Mass of a proton `= 1.66 xx 10^(-27)
Proton in an Electric Field Potential difference `(DeltaV)` between two points `A and B` separated by a distance `x`, in a uniform electric field `E` is given by `DeltaV =-Ex`, where `x` is measured parallel to the field lines. If a charge `q_0` moves from A to B, the change in potential energy `(DeltaU)` is given as `DeltaU=q_0 DeltaV`. A proton is released from rest in uniform electric field of magnitude `8.0 xx 10^4 Vm^(-1)` directed along the positive X-axis. The proton undergoes a displacement of 0.50 m in the direction of E.Mass of a proton `= 1.66 xx 10^(-27)
Proton in an Electric Field Potential difference `(DeltaV)` between two points `A and B` separated by a distance `x`, in a uniform electric field `E` is given by `DeltaV =-Ex`, where `x` is measured parallel to the field lines. If a charge `q_0` moves from A to B, the change in potential energy `(DeltaU)` is given as `DeltaU=q_0 DeltaV`. A proton is released from rest in uniform electric field of magnitude `8.0 xx 10^4 Vm^(-1)` directed along the positive X-axis. The proton undergoes a displacement of 0.50 m in the direction of E.Mass of a proton `= 1.66 xx 10^(-27)
Proton in an Electric Field Potential difference `(DeltaV)` between two points `A and B` separated by a distance `x`, in a uniform electric field `E` is given by `DeltaV =-Ex`, where `x` is measured parallel to the field lines. If a charge `q_0` moves from A to B, the change in potential energy `(DeltaU)` is given as `DeltaU=q_0 DeltaV`. A proton is released from rest in uniform electric field of magnitude `8.0 xx 10^4 Vm^(-1)` directed along the positive X-axis. The proton undergoes a displacement of 0.50 m in the direction of E.Mass of a proton `= 1.66 xx 10^(-27)